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Abstract

Exact analytic solutions for uniform, equally spaced sequences of travelling point loads, loading a continuous finite-

length structure, are found. A general procedure to reduce any train to this kind of sequence, whilst preserving the essential

features of its dynamic load, is also introduced. The analytic expressions provided make it possible to derive the main

choices for both structural designs and monitoring tests. A comparison between analytic predictions and numerical results

for a case study is presented and discussed.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

There are several reasons for the increasing interest of the engineering community in the subject of dynamic
loads induced by train traffic [1]. The increasing speeds of trains produce high levels of structural vibrations
[2]; thus the design of structures to support railways requires accurate knowledge of traffic loads. Moreover,
health monitoring tests on bridges and railroads are often based on comparison of structural responses to
assigned train passages [3]. To design and process these tests efficiently, a deep understanding of the dynamic
characteristics of traffic loads is needed. Whereas vehicular traffic induces mainly random loads [4], the
dynamic load associated with the passage of a train is characterized by a set of frequency peaks [5].

Several kinds of structure supporting the train passages have been examined in the literature: beam-like
structures [6,7], bridges [8,9], discrete supports [10], layered grounds [11]. Some closed-form solutions are
found in Ref. [12], where a time-domain approach is used to analyze the structural response to train passages.
In this paper, advantage is taken of a frequency-domain approach to find simple closed-form relationships
among the relevant parameters of the problem; the characteristic frequencies of train loads are analytically
expressed as functions of the main descriptors of the convoy (interaxle distances, weights, speed). The aim is to
derive both structural design and health monitoring choices with manageable expressions of the solutions.

Some refined models of dynamic train–bridge interactions have already been developed, see for instance
Refs. [13–15]; typically, the frequency range in which these interactions can be neglected goes from 0 up to
50Hz for standard railway bridges. Hence, since a relevant number of structural modes occurs within this
frequency interval, the interactions between the train and the underlying structure is here neglected and the
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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vertical train loads are modelled as a sequence of moving point loads. We refer to the appendix for a more
careful analysis of this assumption. A general procedure is then discussed to transform any train to one
uniform and equally spaced sequence of impulses, while preserving the main features of its dynamic load.
Using this simplifying hypothesis an exact and manageable analytical solution is found for the phase and
modulus of the Fourier transform (FT) of the load, enlightening important aspects of the dynamic train load.
Furthermore, the projection of the load on the spatial modes of the supporting structure makes it possible to
calculate some bounds of the structural response and to predict, in general, the values of the train parameters
(velocity, characteristic wagon length, number of wagons) leading to critical structural conditions. The
analytical solution considered is successfully compared with numerical results for the case of a high-speed
ETR500 train travelling over a one-span arched bridge.

2. Travelling sequences of point loads

When the elastic interaction between the vertical dynamics of the wagons and the underlying structure is
neglected, only the weight and centrifugal accelerations of the train contribute to the applied load. The time-
varying inertia of the train has also been neglected, its effects on the structural dynamics being bounded by the
ratio between the train and bridge masses (often this ratio does not exceed 5%). A discussion of the limits of
this assumption is reported in Appendix A, while a comparison of the available numerical methods for the
analysis of vehicle–structure interactions can be found in Ref. [16].

The track is here thought of as a smooth planar curve C with curvilinear abscissa x. The in-plane vector field
everywhere normal to C is labelled as nðxÞ while e represents the out-of-plane unit vector. The train is thought
of as a travelling sequence of point loads centered in the current positions of its wheels; the intensity of each
impulse is determined by the static weight acting on each wheel, while the centrifugal force is assumed to be
proportional to the static weight. To represent the point loads, the Dirac delta functions are used, allowing for
exact analytic treatment. As a constant velocity vT is considered for the train, the force acting on the track C at
time t is given by

f ðx; tÞ ¼
XJ

j¼1

½W jeþ CjnðxÞ�dðx0j þ vT t� xÞ; x 2 C, (1)

where x0j denotes the initial (t ¼ 0) position of the jth wheel, W j and Cj, respectively, represent the weight and
the centrifugal force acting on the jth wheel. The summation is extended to the total number J of train wheels.
This explicit and simple dependence of the load f ðx; tÞ on the time variable t allows for an exact evaluation of
its FT. The case of a non-constant velocity, i.e. a decelerating or accelerating train, where forces tangent to the
track are induced, will not be considered here. For a constant train speed, the centrifugal loads Cj �

v2T W j=ðgRÞ are proportional to the static weights assigned to each wheel, with R and g being the radius of
curvature of the track and the acceleration of gravity, respectively.

Once the following dimensionless quantities have been defined:

s ¼
x

Lw

; t ¼ $t; u ¼
vT

$Lw

; Dj ¼
W j

$2MLw

, (2)

the dimensionless expression of the load (1) on the track reads:

f̂ ðs; tÞ ¼ eþ
v2T
Rg

nðsÞ

� �
pðs; tÞ,

pðs; tÞ :¼
XJ

j¼1

Djdðs0j þ ut� sÞ. ð3Þ

Here Lw,$ and M represent, respectively, the total length of the train wagon, the first structural pulsation and
the total mass of the structure. The vector field ½eþ v2T=ðRgÞnðsÞ� is assigned once the speed of the train and the
curvature of the track are known; the attention is thus focused on the properties of the time–space function
pðs; tÞ, physically representing the vertical component of the load.
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2.1. Exact Fourier transform and relevant properties

As already remarked, if the speed of the train is assumed to be constant, the FT of expression (3) can easily
be computed analytically. Indeed, since

F½dðaþ btÞ� ¼
1ffiffiffiffiffiffi
2p
p
jbj

exp
iao
b

� �
; b40 (4)

for the FT of the load (3) we will have

Pðs;oÞ ¼F
XJ

j¼1

Djdðs0j þ ut� sÞ

" #

¼
1ffiffiffiffiffiffi
2p
p
juj

XJ

j¼1

Dj exp
iðs� s0jÞo

u

� �
; u40, ð5Þ

i.e. a sum of complex numbers on the unit circle weighted by the dimensionless wheel forces Dj. Since, under a
suitable temporal shift, two observers in two different abscissae (s1 and s2) measure the same time histories for
the load, it is reasonable to expect that Pðs1;oÞ and Pðs2;oÞ share the same modulus while generally having a
different phase. As a matter of fact it can easily be proven from Eq. (5) that the modulus kPðs;oÞk is
independent of the abscissa s:

PðoÞ :¼kPðs;oÞk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðs;oÞP�ðs;oÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j;k

DjDk

2pu2
exp

iðs� s0jÞo
u

exp
iðs� s0kÞo

u

� ��vuut
¼

1ffiffiffiffiffiffi
2p
p
juj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j;k

DjDk exp i
ðs0k � s0jÞo

u

� �s
; ð6Þ

where z� denotes the complex conjugate of z 2 C. Hence, in problems of moving load identification (see for
instance Ref. [17]), the modulus PðoÞ of the load can be measured on an arbitrary abscissa along the
supporting structure and lead to the same response. The effect of the dimensionless train speed u on the
modulus (6) is twofold: while modulating PðoÞ through the term 1=juj it also stretches the frequency scale
through the term o=u. Thus, the shape of the modulus PðoÞ remains the same at different speeds provided the
load and frequency scales are changed. On the contrary, the phase of the FT of the load

jðs;oÞ :¼ argPðs;oÞ ¼ arg
XJ

j¼1

Dj exp
iðs� s0jÞo

u

� �" #
(7)

does depend on the abscissa s. Finally, using Eqs. (5)–(7), the FT of the load is usefully rewritten in polar
form as

Pðs;oÞ ¼ PðoÞ exp½�ijð0;oÞ� exp i
os

u

� �
; (8)

the last exponential term in Eq. (8) represents the only term depending on the spatial coordinate s and will be
called the load shape; the wavelength of the load shape equals l � 2pu=o and is proportional to the velocity
and inversely proportional to the frequency. Its contribution to the modal loads will become evident in the
following sections.

2.2. Load projection on structural modes

The supporting structure is modelled here as a one-dimensional continuum; it is natural to assume that its
domain is parametrized by the same abscissa s describing the track C. Once the RN -valued function u has been
defined, mapping every abscissa s and instant t in the current kinematical descriptors, the dimensionless
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equations governing the structural motion can be written as follows:

L½uðs; tÞ� þ w_uþ €u ¼ TðsÞpðs; tÞ; s 2 D :¼ ½0; Z�,

B½uðs; tÞ� ¼ 0; s ¼ 0; Z ð9Þ

with L being the linear self-adjoint stiffness operator, B representing the chosen boundary conditions, w the
dimensionless structural viscous damping, and TðsÞ an N-dimensional vector accounting for the track
curvature and properly projecting the vertical load pðs; tÞ onto the structural balance equations; to this aim
TðsÞ is a suitable function of the vector field ½eþ v2T=ðRgÞnðsÞ� defined in Section 2. Here, a superimposed dot
means the dimensionless time derivative while Lb is the length of the considered structure with Z :¼Lb=Lw its
dimensionless counterpart. The FT of Eq. (9) leads to

L½Uðs;oÞ� þ ðiow� o2ÞUðs;oÞ ¼ TðsÞPðs;oÞ; s 2 D. (10)

By expanding the FT Uðs;oÞ of the displacement in terms of the eigenfunctions wm of L with boundary
conditions as in Eq. (9):

Uðs;oÞ ¼
X

m

wmðsÞUmðoÞ;
L½wmðsÞ� ¼ m2mwmðsÞ; s 2 D;

B½wmðsÞ�s¼0;Z ¼ 0

(
(11)

for m ¼ 1; 2; . . . we obtain

ðm2m þ iow� o2ÞUmðoÞ ¼
Z Z

0

Pðs;oÞTðsÞ � wmðsÞds¼:CmðoÞ, (12)

where mm represents the mth structural pulsation and CmðoÞ is the mth modal load. Recalling Eqs. (6) and (8),
the polar components of CmðoÞ are written as follows:

kCmðoÞk ¼ PðoÞ
Z Z

0

exp i
os

u

� �
TðsÞ � wmðsÞds

				
				,

argCmðoÞ ¼ arg

Z Z

0

exp i
os

u

� �
TðsÞ � wmðsÞds

� �
� jð0;oÞ. ð13Þ

Note that the difference between modal loads on different structural modes is only affected by the load shape
expðios=uÞ. Since both the functions TðsÞ � wmðsÞ and expðios=uÞ are oscillating functions in ½0; Z�, the possible
closeness of their spatial wavelengths could lead to a relevant scalar product in Eq. (13). Typically, the
wavelengths of the modal shapes wmðsÞ decrease as the mode number m increases; thus lower structural modes
are prevalently loaded at lower values of the ratio o=u. This feature will be confirmed by the analytical
predictions in Section 3 and by the numerical simulations in Section 4.

A final remark concerns the sequence of steps adopted to obtain the representation of the load (13);
referring to the following diagram:

(14)

we first computed the FT Pðs;oÞ of the load pðs; tÞ and then projected the results on the modes wm to obtain
the modal loads CmðoÞ. The diagram in Eq. (14) is commutative; in Appendix B proof is provided for a
forcing time law pðs; tÞ composed of a sum of Dirac delta functions. In the proof the time instants, in which
each wheel enters and leaves the structural domain ½0; Z�, are used explicitly, even though, as expected, the
final results CmðoÞ are independent of them. Despite the commutativity of diagram (14), the alternative
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path—often followed in the literature [17] and composed of a modal projection followed by a FT—turns out
to be not convenient for several reasons:
�

Fig

len
when forces are considered spatially lumped, as in the case of a sequence of train wheels, a large number of
modes is needed for the convergence of

P
wmðsÞpmðtÞ to pðs; tÞ;
�
 since the FT of pmðtÞ cannot be computed analytically, the computational effort is greatly increased; in
addition, truncation and sampling errors are introduced;

�
 as far as travelling loads are concerned, the spatial and temporal steps should be related; hence, every time a

non-uniform mesh is chosen for the spatial domain, special routines for computing the FT of an unevenly
sampled set of data are needed.

3. Simplified analytic solutions

In the expressions obtained, sums over the number of the train wheels are involved, the information about
the train characteristics being gathered into the lists fDj ; j ¼ 1; . . . Jg and fs0j ; j ¼ 1; . . . Jg. In order to extract
from these data expressive analytical information regarding the dynamic load of the train, it is useful to
introduce some simplifying hypotheses.

According to Fig. 1, the weight of the whole train is assumed to be distributed uniformly over asset of
equally spaced wheels, the constant distance between these wheels being the length Lw of the wagon. In Fig. 1,
two steps are necessary to proceed from the actual configuration of the train wheels (a), in which several
characteristic lengths are needed for description, to the simplest configuration (c) in which only one
characteristic length is present. One could choose either the first wheel of each wagon, as sketched in Fig. 1, or,
equivalently, the center of mass of the wheels in each wagon in order to proceed from the actual to the simplest
configuration; the difference between the two choices is indeed only a temporal shift. Having chosen the
characteristic length of the wagon as the unit length, the hypothesis discussed is equivalent to assuming that:

s0j ! ð1� jÞ; Dj ! Q=Nw; j ¼ 1; 2; . . . � Nw (15)

with Q the dimensionless weight of the whole train and Nw ¼ J=4 the number of wagons, including the
locomotives. Note that Lw is also the most frequently occurring value in the differences ðs0k � s0jÞ involved in
Eq. (6): this observation suggests how further to improve the above hypothesis. Indeed, by inspecting the table
of numbers fðs0k � s0jÞ; k; j ¼ 1; 2; . . . Jg one can find an ordered sequence of the ‘‘most frequent’’ lengths and
use these to generate sets of uniformly spaced sequences of point loads approximating the actual train: for
instance, the configuration (b) in Fig. 1 represents the best approximation of the actual train (a) based on two
characteristic lengths, respectively, labelled as Lw and d. However, since manageable and synthetic expressions
. 1. Exact and simplified descriptions of the train parameters: (a) exact sequence, (b) approximating sequence with two characteristic

gths and (c) approximating sequence with one characteristic length.
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are sought, the attention is limited to the simplest case of assumption (15) in which only one characteristic
length is retained.

3.1. Reduced expressions of the load modulus and phase

Using the previous hypothesis, the modulus of the FT of the load, PðoÞ in Eq. (6), reduces to

P̂ðoÞ ¼
Q

Nw

ffiffiffiffiffiffi
2p
p
juj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNw

j;k

exp i
ðj � kÞo

u

� �vuut ¼
Qffiffiffiffiffiffi
2p
p
juj

sin
Nwo
2u

Nw sin
o
2u
















, (16)

while its phase, jðs;oÞ in Eq. (7), reduces to

ĵðs;oÞ ¼ arg
XNw

j¼1

exp
iðs� 1þ jÞo

u

� �" #
¼
ðNw þ 2s� 1Þo

2u






modð2pÞ

; (17)

here and in the following the superimposed hat means the approximated value of the quantities, in accordance
with assumption (15).

In Fig. 2 the function j sinNwbj=jNw sin bj is plotted as a function of the parameter b ¼ o=ð2uÞ ¼
Lwo$=ð2vT Þ for Nw ¼ 6. This function is bounded by 1, is periodic of period p and has global maxima in the
points b ¼ np, n ¼ 0; 1; . . .; in each period there are exactly ðNw � 1Þ peaks.

Hence according to hypothesis (15), the modulus kPðs;oÞk of the load FT has its highest values, namely
Q=ð

ffiffiffiffiffiffi
2p
p
jujÞ, centered at b ¼ np, or, in terms of dimensional quantities, at the frequencies:

f̄ n :¼ nu$ ¼ n
vT

Lw

; n ¼ 1; 2 . . . . (18)

Hence, the characteristic frequencies of the load are multiples of the ratio between the speed of the train and
the length of the wagon. Let us stress the linear dependence of the frequency peaks (18) on the speed of the
train, since this linear correspondence will be exploited in the following sections. The exact description (6) for
the load comprising a non-uniform, unevenly spaced sequence of point loads can, of course, contain several
other harmonics: those listed in Eq. (18) correspond to the dominant terms. It is worth noting that, at the nth
critical frequency (18), the wavelength of the load shape l ¼ 2pu=o equals 1=n, or in terms of dimensional
quantities Lw=n.

3.2. Bounds for the structural response

In this section, we derive some bounds for the structural response regardless of whether the structural
eigenfunctions are known; in Section 4.1, the structural response will instead be evaluated through the modal
projection of the load shape as in Eq. (13).

The bounds for both the modal loads and responses are derived from expressions (16) and (17). After their
substitution in Eq. (13), one easily obtains

kĈmðoÞkpP̂ðoÞkwmkkTk

Z Z

0

exp½iĵðs;oÞ�ds

				
				; (19)
� 2� 3� 4�
�

1

Fig. 2. Plot of the function j sinNwbj=jNw sin bj as a function of b for Nw ¼ 6.
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the last integral can be estimated through Eq. (17) to obtainZ Z

0

exp i
ðNw þ 2s� 1Þo

2u

� �
ds

				
				 ¼

ffiffiffi
2
p

u
o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos

oZ
u

r
. (20)

Thus, using an orthonormal system of eigenfunctions, one ends up with the following bounds for the moduli
of the FT of the modal loads:

kĈmðoÞkp
QkTkffiffiffi

p
p

o

sin
Nwo
2u

Nw sin
o
2u

















ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos

oZ
u

r
. (21)

Let us explicitly note that the limit limo!0 kĈmkpQkTkZ=ð
ffiffiffi
p
p

uÞ is finite. As a consequence of Eq. (21), the
bounds for the structural response in terms of moduli of the Fourier coefficients UmðoÞ are immediately
derived from Eq. (12) to obtain

kÛmðoÞk ¼
kCmðoÞkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðm2m � o2Þ
2
þ o2w2

q p
QkTkffiffiffi

p
p

o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2m � o2Þ

2
þ o2w2

q sin
Nwo
2u

Nw sin
o
2u

















ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos

oZ
u

r
. (22)

Thus the static modal responses are bounded by

lim
o!0
kÛmðoÞkp

QkTkZffiffiffi
p
p

um2m
, (23)

whilst the responses at the structural resonant frequencies are bounded by

lim
o!mm�

w
2

kÛmkp
ffiffiffi
2
p

QkTkffiffiffi
p
p
ðwmmÞ

3=2

sin
Nwmm

2u
Nw sin

mm

2u

















ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos

mmZ
u

r
. (24)

Eq. (24) enables optimal values for the speed of the train to be found in order to produce the minimal
structural response. Indeed, referring to Fig. 2, where the function j sinNwbj=jNw sin bj was plotted, the
structural response (24) is minimized when both the function:

j½sinðNwmmÞ=ð2uÞ�=½Nw sin mm=ð2uÞ�j (25)

and its envelope have minima, i.e. when

mm

u
¼ ð2k þ 1Þp or u ¼

mm

ð2k þ 1Þp
. (26)

For k ¼ 1; 2; . . . Eq. (26) yields the less critical values of the speed of the train for the mth structural mode.
Fig. 3. Maximum allowed variance of speed optimal values.
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In Fig. 3 the traces of the maxima (solid black) and minima (dashed black) of the function (25) are drawn,
for Nw ¼ 16, on the frequency–speed plane ðo; up=mmÞ. Accordingly, a procedure to derive the maximum
allowed variance of the optimal values (26) is established; the main assumption is to limit the velocity in a
fraction, say ao1, of the region between two successive maxima. After some algebra, the optimal values for
the dimensionless speed in order to produce the minimum response on the mth mode are given by the
following intervals:

uopt ¼
mm

p
1

2k þ 1
�

1

4kaðk þ 1Þ
;

1

2k þ 1
þ

1

4kaðk þ 1Þ

� �
k¼1;2;...

. (27)

In Section 4.2, formula (27) will be tested on the numerical solution of a real problem, namely
the determination of the optimal range of speed for the train ETR500 travelling on a single-span
bridge.
4. Comparisons between analytical and numerical results

4.1. Benchmark solution: beam on elastic foundation

Although several kinds of boundary condition could naturally be considered, a simply supported straight
Euler beam on an elastic foundation is here solved analytically in order to obtain a benchmark solution. In
this case the closed form expression of the structural eigenfunctions wmðsÞ allows for an exact estimation of the
modal loads and responses, rather than the inequalities (19) and (24) obtained for unknown eigenfunctions.

Once the dimensionless space and time variables as given in Eq. (2) are chosen, the equations of motion (9)
are rewritten

Z4

p4
uIV þ

kL4
b

p4EI|ffl{zffl}
k

uþ
cL2

b

p2

ffiffiffiffiffiffiffiffiffiffiffi
Lb

MEI

r
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

w

_uþ €u ¼
XJ

j¼1

Djdðs0j þ ut� sÞ on ½0; Z�, (28)

where u ¼ w=Lb is the dimensionless transverse displacement, EI is the bending stiffness, k is the elasticity of
the ground and c is a damping factor. In deriving Eq. (28) the characteristic pulsation $ has been chosen as
the first natural frequency of the simply supported beam with a vanishing elasticity ground (k ¼ 0, c ¼ 0), i.e.

$ ¼ ðp2=L2
bÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EILb=M

p
; accordingly, the dimensionless weights (2) of the train wheels are also expressed by

Dj ¼W jL
3
b=ðp

4EILwÞ. By comparing Eq. (9) with Eq. (28), the explicit expression of the operator L in Eq. (9)

and its eigenvalues and normalized eigenfunctions are derived:

L½u� ¼
Z4

p4
uIV þ ku; m2m ¼ m4 þ k; wmðsÞ ¼

ffiffiffi
2

Z

s
sin

mps

Z
, (29)

while the vector T reduces to the vector fe � e ¼ 1g, since R!1. The expression for the polar form of the
modal loads CmðoÞ can now be computed through assumption (15); indeed, using Eqs. (17) and (29), Eq. (13)
for the moduli of the FT of the modal loads simplifies to

kĈmðoÞk ¼ P̂ðoÞ
Z Z

0

exp
iðNw þ 2s� 1Þo

2u

� � ffiffiffi
2

Z

s
sin

mps

Z
ds

					
					

¼ P̂ðoÞ
2
ffiffiffiffiffi
2Z
p

mpu2

jZ2o2 �m2p2u2j
sin

mpþ
Zo
u

2














. ð30Þ
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Finally, for the moduli of the Fourier coefficients of the response, one easily obtains

kÛmðoÞk ¼
2
ffiffiffiffiffiffi
pZ
p

muQffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm4 þ k� o2Þ

2
þ o2w2

q sin
Nwo
2u

Nw sin
o
2u


















sin
mpþ

Zo
u

2
Z2o2 �m2p2u2
























. (31)

The static response of the bridge, i.e. the response for o! 0, is essentially described by the first mode; indeed,
since

kÛmð0Þk ¼
2
ffiffiffiffiffiffi
pZ
p

Q

mp2uðm4 þ kÞ
sin

mp
2




 


, (32)

then kÛ1ð0ÞkbkÛ3ð0ÞkbkÛ5ð0Þk and kÛmð0Þk ¼ 0 for m even.

The maxima of the function kÛmðoÞk in Eq. (31), in the dynamic regimes, are instead obtained when these

coefficients are evaluated at the associated eigenfrequencies, i.e. for o! mm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4 þ k
p

. The resulting

expression limo!mm
kÛmk is given by the multiplication of three terms:

kÛmkmax ¼
2
ffiffiffi
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mmw
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ffiffiffi
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Z2m2m �m2p2u2
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. (33)

Once the speed values u�i¼1;2;3 have been defined

u�1ðZÞ :¼
Zmm

pm
; u�2n :¼

mm

2np
; n ¼ 1; 2; . . . ,

u�3kðZÞ :¼
mmZ

ð2k þ 1�mÞp
; k ¼ 1; 2; . . . . ð34Þ

critical, respectively, for each of the three terms in Eq. (33), the maximal structural response of the mth mode
occurs at the possible intersections of the three curves u�i¼1;2;3ðZÞ in the plane ðZ; uÞ.

The second critical condition u � u�2ðZÞ has already been discussed, see Eq. (18), and occurs when the ratio
vT=Lw between the speed of the train and characteristic wagon length is a multiple of one structural frequency;
in this case the load modulus PðoÞ is resonant with the structural mode considered. The other two
contributions are instead related to the projections of the load shape (8) onto the structural eigenfunctions.
Indeed, when u � u�1ðZÞ and o � mm the load shape wavelength (l ¼ 2pu=o ¼ 2Z=m) coincides with the mth
modal wavelength, see Eq. (29), whilst in the critical sets u � u�3kðZÞ the load shape wavelength equals suitable
fractions of the modal wavelengths. Hence, the simultaneous occurrence of the first and second critical
conditions in Eq. (34), i.e. the intersections of curves u�1ðZÞ and u�2n, indicates a load characterized by both the
same frequency and the same wavelength as the considered mode. This worst case is more often encountered
for short span bridges: as a matter of fact, in order to have u�1ðZÞ ¼ u�2n for the mth structural mode, one needs
LbpmLw=2, meaning a bridge length less than m=2 the length of the wagon.

The overall scenario is depicted in Fig. 4 where the maximal response kÛ1kmax of the first structural mode
has been plotted on the plane ðZ; uÞ. The sets of critical speeds u�1ðZÞ, fu

�
2ng and fu

�
3kðZÞg are also plotted by a

dashed black line, a set of solid black lines and a set of dotted gray lines, respectively. With Lw ’ 15230m,
typical values for the parameter Z range from 0:5 up to 4, whilst the parameter u can vary from 0 up to 0:4
(Lw ’ 15m, vT ’ 270 km=h, $=2p ’ 2Hz). The tendency is to have the highest structural responses in the
region of low values of the parameter Z, namely short span bridges, and in the region near the first critical
speed u�21 (resonant load condition); outside these regions the structural response is noticeably lower. The
usefulness of the results described is twofold: indeed, given a bridge whose span length and first natural
frequency are Lb and $, one can find the optimal speeds for a given train, with wagons of length Lw, in order
to minimize the response. Similarly, given the speed of the train considered, one can find several intervals for
choosing the optimal lengths of the bridge span. It is useful to recall that Eq. (31), from which the above
discussion follows, represents the exact solution for the case of a simply supported, elastically grounded beam,
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Fig. 4. Maximal response kÛ1kmax of the first structural mode on the ðZ; uÞ plane.
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Fig. 5. Sequences of weights for the ETR500: actual train (squares), approximating sequences with one characteristic length (stars) and

two characteristic lengths (triangles).

Table 1

Numerical data used in the simulations

Bridge Lb ¼ 70m, m1=2p ¼ 2:51Hz, m2=2p ¼ 2:75Hz, M ¼ 1:8	 107 kg

Train Lw ¼ 26:1m, Nw ¼ 12,
PJ

j W j ¼ 6:2	 105 kg (total weight)

F. Vestroni, S. Vidoli / Journal of Sound and Vibration 303 (2007) 691–706700
subjected to a uniform and regularly spaced sequence of Nw point loads; in general, it only gives a conservative
approximation of the true solution (8) through assumption (15), as underlined in the application of the
next section.

4.2. High-speed train on a single span arched bridge

The case of a high-speed train, namely an ETR500, over a single-span arched bridge is used to compare
results between the exact, numerically computed, expressions of PðoÞ, CmðoÞ, UmðoÞ and their analytical
approximations P̂ðoÞ, ĈmðoÞ, ÛmðoÞ through the assumption (15). The bridge under consideration is
characterized by having the first two natural frequencies very close together; nevertheless, for the first four
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Fig. 6. FT of the loads associated to the ETR500 sequences as function of frequency (vT ¼ 200km=h). Actual train (solid black),

approximating sequences with one characteristic length (dashed gray) and two characteristic lengths (solid gray).
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natural frequencies of the structure.
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frequencies, the modal shapes of the bridge closely follow the modes of a simply supported beam; in particular
the first mode is symmetric whilst the second is antisymmetric with respect to the beam midpoint. Table 1
collects the main numerical data concerning the bridge and the train under consideration.

In Fig. 5, the actual sequence of weight point loads relative to the ETR500 train is plotted together with its
uniform and equally spaced approximations with one (star-shaped symbols) and two (triangle-shaped
symbols) characteristic lengths; refer, respectively, to Figs. 1(c) and (b). The corresponding moduli of the FT
of the loads associated with these sequences of travelling point loads are drawn in Fig. 6. As already discussed,
the exact solution (solid black line) is bounded at the critical frequencies by both approximations with one
(dashed gray line) and two (solid gray line) characteristic lengths. The approximation with two characteristic
lengths also describes the modulation with frequency vT=d of the highest peaks, whose positions are multiples
of the ratio vT=Lw. As a matter of fact, a phenomenon similar to frequency modulation takes place between
the two leading harmonic terms characterized by the two close frequencies vT=Lw and vT=ðLw þ dÞ. The
moduli of the FT of the load, both the exact (5) and the approximated analytic expression (17), are also
displayed as functions of o and u by two contour plots in Figs. 7 and 8, respectively. A comparison of these
figures shows a significant agreement between the exact P and approximated P̂ shapes of the FT of the load.
The main differences are represented by an overestimation of the load P̂ along some lines of the ðo; uÞ plane;
as already discussed, the approximation (15) leads to a simplified but more conservative model for the
train load.
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Fig. 9. kU1k as a function of o and u. The vertical lines correspond to the first two natural frequencies, the horizontal lines and the

rectangles indicate the analytical predictions for respectively the critical values and the optimal ranges of train speed.
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Fig. 10. kU2k as a function of o and u. The vertical lines correspond to the first two natural frequencies, the horizontal lines and the

rectangles indicate the analytical predictions for respectively the critical values and the optimal ranges of train speed.
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Despite the difference in the maximal values of the load, the simplified model is able to predict correctly not
only the overall qualitative response, but also the critical conditions of the main parameters (dimensionless
frequency and speed). Indeed, in Figs. 7 and 8 the critical speeds for the first two modes of the considered
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Table 2

Train speed ranges (km/h) for the first three modes minimal response

Mode 1 157� 14 94� 5 67� 2 52� 2 43� 1

2 172� 16 103� 5 74� 3 57� 2 47� 1

3 380� 35 228� 12 163� 6 127� 3 104� 2

F. Vestroni, S. Vidoli / Journal of Sound and Vibration 303 (2007) 691–706 703
bridge are emphasized by two horizontal lines. The exact values coincide with the approximated values as
found by Eq. (18); in both cases the dimensional train speeds equal the products of the length of the wagon
with the structural frequencies, leading, respectively, to 235 and 258 km/h.

Figs. 9 and 10, in which the moduli of the first two modal responses are drawn on the plane ðo; uÞ, confirm
these analytical predictions, showing the highest amplitudes at the predicted train speeds. In both figures, the
structural modal shapes and the real and imaginary parts of the load shape exp½iðos=u� jð0;oÞÞ� are plotted
with solid, dashed and dotted lines, respectively. For the considered bridge, the wavelengths of the first and
second modes are, respectively, equal to 2Lb ’ 140m and Lb ’ 70m, whilst, as discussed in Section 3.1, at the
first (n ¼ 1) critical speed the wavelength of the load shape equals the total length of the wagon Lw ’ 26m;
hence, at the critical points the two modal shapes are close to being orthogonal to the load shape (89:0
 and
86:5
 angles, respectively).

Since the first two natural frequencies are close, the speeds needed for their resonances are also close;
meanwhile the wavelength of the second mode is twice the wavelength of the first mode, and, as such, more
similar to the load wavelength. This explains the relevant contribution of the second mode to the structural
dynamic response. Although the load and modal shapes are close to being orthogonal, the resonance
condition is nonetheless able to produce dynamic effects with the same order of magnitude as the static
response. As predicted by Eq. (32), the static response is essentially given by the first mode contribution.

Finally, Eqs. (18) and (27) are used to derive the ranges of train speed leading to the minimal response
of a given structural mode, together with their maximum allowed tolerance. These optimal values are
listed in Table 2 for the first 3 structural modes and are confirmed by the numerical results in Figs. 9 and 10,
where, the gray rectangles correspond to the first three optimal frequency–speed ranges, analytically derived
in Eq. (27).

5. Conclusions

The structural load due to train passages is studied from an analytical viewpoint; to this end, some
simplifying hypotheses are introduced and discussed. By neglecting the interaction between the train and the
structure and reducing the parameters describing the composition of the train, a coarse, more conservative
model for the dynamic load acting on the structure is derived. Exact analytic solutions for the case of equally
spaced and uniform sequences of travelling point loads are found; a general procedure to reduce any train to
this kind of sequence, whilst preserving the essential features of its dynamic load, is also introduced. The main
features of the Fourier transform (FT) of the load are enlightened: the independence of the load modulus in
relation to the abscissa on the track, the behavior of the load frequency peaks in relation to the composition
and speed of the train, and some bounds for the structural response to sequences of moving loads.

For bridge structures with separate natural frequencies, the first mode contributes mainly to the structural
response, since the resonance condition typically requires too high speeds; an arched bridge is referred to, for
which the second mode contribution is also relevant due to the closeness of the first two natural frequencies.

Despite their simplicity, these results represent useful tools to derive the main choices for both structural
design and health monitoring tests with manageable expressions for the critical ranges of both the structural
eigenfrequencies and train speeds. For instance, the expressions of the FT of the load represent fundamental
tools for extracting the structural frequency-response function from forced vibration data of structures
subjected to railway traffic. Indeed, since the railway traffic load is characterized by a set of characteristic
frequency peaks, a suitable deconvolution procedure, based on the analytic knowledge of the load FT, should
be developed.
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Appendix A

In the developed model the inertia of the masses travelling over the structure has been intentionally
neglected; here, the limit of validity of this assumption is estimated.

To this end, consider the wheels—the dimensionless mass of which are labelled as nj ¼ $
2LwDj=g—as a set

of oscillators travelling along the structure; these kinds of problem are considered for instance in Refs. [14,18].
If, for the sake of simplicity, the structure is supposed to be modelled as an Euler beam, the equations of
motion read as follows:

nj €yj þ h½yj � uðs0j þ ut; tÞ� ¼ Dj ; j ¼ 1; . . . ; J,

Z4

p4
uIV þ kuþ w _uþ €u ¼

XJ

j¼1

h½yj � uðs0j þ ut; tÞ�dðs0j þ ut� sÞ, ð35Þ

where yj is the dimensionless vertical displacement of the jth wheel and h its dimensionless stiffness; the
meaning of the remaining symbols in Eq. (35) are the same as in Eq. (28). If these oscillators are supposed to
be vertically clamped on the structure, in other words if yj�!uðs0j þ ut; tÞ, then for the vertical acceleration of
the masses, by deriving twice with respect to time t, the expression

uðs0j þ ut; tÞ ¼
Z 1
�1

uðs; tÞdðs0j þ ut� sÞds, (36)

we obtain

€yj�! €uðs0j þ ut; tÞ þ 2u _u0ðs0j þ ut; tÞ þ u2u00ðs0j þ ut; tÞ. (37)

Hence, Eq. (35) is rewritten

Z4

p4
uIV þ kuþ u2

X
j

nju
00ðs0j þ ut; tÞdðs0j þ ut� sÞ

þ w _uþ 2u
X

j

nj _u
0ðs0j þ ut; tÞdðs0j þ ut� sÞ

þ €uþ
X

j

nj €uðs0j þ ut; tÞdðs0j þ ut� sÞ ¼
X

j

Djdðs0j þ ut� sÞ ð38Þ

or, after a standard Galerkin projection on a set of normalized modes (uðs; tÞ ¼
P

mwmðsÞumðtÞ):

m2ndnm þ u2
X
j;n

njw
00
mðsÞ







s¼s0jþut

wnðs0j þ utÞ

2
4

3
5um

þ wdnm þ 2u
X
j;n

njw
0
mðsÞ







s¼s0jþut

wnðs0j þ utÞ

2
4

3
5 _um

þ dnm þ
X
j;n

njwmðs0j þ utÞwnðs0j þ utÞ

" #
€um ¼

X
j

Djdðs0j þ ut� sÞ. ð39Þ

It can immediately be seen that the travelling masses make the resulting system linear, but with time-varying
coefficients; if an averaging procedure is applied to the time-varying terms, the effect is still to couple all the
modes through elastic, viscous and inertial additional matrices. Thus, for our purposes, Eq. (39) is too difficult
to derive analytical information; however, it can be used to estimate the limits within which the additional
terms due to travelling masses can be neglected. Indeed, since the eigenfunctions are bounded by the
normalizing conditions, the relative importance of these additional terms can be coarsely bounded by the
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following ratios:

u2
X

j

nj

 !,
m2n; 2u

X
j

nj

 !,
w;

X
j

nj

 !,
1. (40)

Hence, when all three upper bounds are sufficiently small, the time-varying terms can be neglected or, for
greater accuracy, averaged over the modal periods; in the case of an ETR500 train, the values 0:1%, 0:5%, and
3:5% were respectively obtained for the three bounds in the worst case n ¼ 1, and the associated time-varying
contributions to the motion equations were therefore neglected.
Appendix B. Commutativity of diagram (14)
Claim. Given pðs; tÞ :¼
PJ

j¼1Djdðs0j þ ut� sÞ, then:

hF½pðs; tÞ�;wðsÞi ¼F½hpðs; tÞ;wðsÞi� (41)

for every function wðsÞ vanishing outside the interval ½0; Z�.
Proof. Using the well-known Fourier transform of a travelling Dirac delta (4) we obtain, for the RHS
of Eq. (41):

hF½pðs; tÞ�;wðsÞi ¼ F
XJ

j¼1

Djdðs0j þ ut� sÞ

" #
;wðsÞ

* +

¼
1ffiffiffiffiffiffi
2p
p
juj

XJ

j¼1

Dj e�
iðs�s0j Þo

u ;wðsÞ

� �

¼
1ffiffiffiffiffiffi
2p
p
juj

XJ

j¼1

Dj

Z Z

0

e
�iðx�s0j Þo

u wðxÞdx. ð42Þ

To evaluate the LHS of Eq. (41) we need first to compute the projection hpðs; tÞ;wðsÞi and then computing the
FT of the resulting time function. Since the function wðsÞ vanishes outside the interval ½0; Z�, it can always be
regarded as the product

wðsÞ :¼ ŵðsÞwðsÞ; wðsÞ :¼
0; so0; or s4Z;

1 0pspZ:

(
(43)

ŵðsÞ being defined with no restrictions on all the real axis. Hence

hpðs; tÞ;wðsÞi ¼
XJ

j¼1

Dj

Z Z

0

dðs0j þ ut� sÞwðsÞds

¼
XJ

j¼1

Dj ŵðs0j þ utÞwðs0j þ utÞ. ð44Þ

The time functions wðs0j þ utÞ vanish everywhere except in the intervals Tj1ptpTj2 when wðs0j þ utÞ ¼ 1; here
Tj1 :¼ s0j=u, and Tj2 :¼ðs0j þ ZÞ=u are the instants at which the jth wheel enters and leave the domain ½0; Z�.
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Finally for the LHS of Eq. (41), we obtain

F½hpðs; tÞ;wðsÞi� ¼
1ffiffiffiffiffiffi
2p
p

Z þ1
�1

XJ

j¼1

Dj ŵðs0j þ utÞwðs0j þ utÞ

" #
e�iot dt

¼
1ffiffiffiffiffiffi
2p
p

XJ

j¼1

Dj

Z þ1
�1

½ŵðs0j þ utÞwðs0j þ utÞ� e�iot dt

¼
1ffiffiffiffiffiffi
2p
p

XJ

j¼1

Dj

Z þTj2

�Tj1

ŵðs0j þ utÞ e�iot dt ð45Þ

¼
1ffiffiffiffiffiffi
2p
p

u

XJ

j¼1

Dj

Z Z

0

e�
iðx�s0j Þo

u ŵðxÞdx, ð46Þ

where the change of variables (x! s0j þ ut, dx! udt, ) has been made to evaluate the integral. Since w � ŵ

inside the interval ½0; Z�, a comparison of Eqs. (42) and (46) completes the proof. &
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